Regulation of Apoptosis by Nitrosative Stress

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of apoptosis by nitrosative stress.

Nitrosative stress can prevent or induce apoptosis. It occurs via S-nitrosylation by the interaction of nitric oxide (NO) with the biological thiols of proteins. Cellular redox potential and non-heme iron content determine S-nitrosylation. Apoptotic cell death is inhibited by S-nitrosylation of the redox-sensitive thiol in the catalytic site of caspase family proteases, which play an essential ...

متن کامل

Role of oxidative/nitrosative stress-mediated Bcl-2 regulation in apoptosis and malignant transformation.

Bcl-2 is a key apoptosis regulatory protein of the mitochondrial death pathway. The oncogenic potential of Bcl-2 is well established, with its overexpression reported in various cancers. The antiapoptotic function of Bcl-2 is closely associated with its expression levels. Reactive oxygen and nitrogen species (ROS/RNS) are important intracellular signaling molecules that play a key role in vario...

متن کامل

Multimodal control of Cdc25A by nitrosative stress.

Cdc25A propels cell cycle progression, is overexpressed in numerous human cancers, and possesses oncogenic and antiapoptotic activities. Reactive oxygen species, such as hydrogen peroxide, regulate Cdc25A, but the physiologic and pathologic effects of nitric oxide (*NO) and *NO-derived reactive species are not well defined. Herein, we report novel independent mechanisms governing Cdc25A in resp...

متن کامل

DksA-Dependent Transcriptional Regulation in Salmonella Experiencing Nitrosative Stress

Redox-based signaling is fundamental to the capacity of bacteria to sense, and respond to, nitrosative and oxidative stress encountered in natural and host environments. The conserved RNA polymerase regulatory protein DksA is a thiol-based sensor of reactive nitrogen and oxygen species. DksA-dependent transcriptional control promotes antinitrosative and antioxidative defenses that contribute to...

متن کامل

Protection from nitrosative stress by yeast flavohemoglobin.

Yeast hemoglobin was discovered close to half a century ago, but its function has remained unknown. Herein, we report that this flavohemoglobin protects Saccharomyces cerevisiae from nitrosative stress. Deletion of the flavohemoglobin gene (YHB1) abolished the nitric oxide (NO)-consuming activity of yeast cells. Levels of protein nitrosylation were more than 10-fold higher in yhb1 mutant yeast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMB Reports

سال: 2002

ISSN: 1976-6696

DOI: 10.5483/bmbrep.2002.35.1.127